本文共 3385 字,大约阅读时间需要 11 分钟。
import torchfrom torch import nnfrom torch.nn import functional as Fimport extractorsimport warningswarnings.filterwarnings("ignore")
class PSPModule(nn.Module): def __init__(self, features, out_features=1024, sizes=(1, 2, 3, 6)): super().__init__() self.stages = [] self.stages = nn.ModuleList([self._make_stage(features, size) for size in sizes]) self.bottleneck = nn.Conv2d(features * (len(sizes) + 1), out_features, kernel_size=1) self.relu = nn.ReLU() def _make_stage(self, features, size): prior = nn.AdaptiveAvgPool2d(output_size=(size, size)) conv = nn.Conv2d(features, features, kernel_size=1, bias=False) return nn.Sequential(prior, conv) def forward(self, feats): h, w = feats.size(2), feats.size(3) print(feats.size()) priors = [F.upsample(input=stage(feats), size=(h, w), mode='bilinear') for stage in self.stages] + [feats] bottle = self.bottleneck(torch.cat(priors, 1)) return self.relu(bottle)class PSPUpsample(nn.Module): def __init__(self, in_channels, out_channels): super().__init__() self.conv = nn.Sequential( nn.Conv2d(in_channels, out_channels, 3, padding=1), nn.BatchNorm2d(out_channels), nn.PReLU() ) def forward(self, x): h, w = 2 * x.size(2), 2 * x.size(3) p = F.upsample(input=x, size=(h, w), mode='bilinear') return self.conv(p)
class PSPNet(nn.Module): def __init__(self, n_classes=18, sizes=(1, 2, 3, 6), psp_size=2048, deep_features_size=256, backend='resnet34', pretrained=False): super().__init__() self.feats = getattr(extractors, backend)(pretrained) self.psp = PSPModule(psp_size, 1024, sizes) self.drop_1 = nn.Dropout2d(p=0.3) self.up_1 = PSPUpsample(1024, 256) self.up_2 = PSPUpsample(256, 64) self.up_3 = PSPUpsample(64, 64) self.drop_2 = nn.Dropout2d(p=0.15) self.final = nn.Sequential( nn.Conv2d(64, n_classes, kernel_size=1), nn.LogSoftmax() ) self.classifier = nn.Sequential( nn.Linear(deep_features_size, 256), nn.ReLU(), nn.Linear(256, n_classes) ) def forward(self, x): print('x:', x.size()) f, class_f = self.feats(x);print('f:', f.size());print('class_f:', class_f.size()); p = self.psp(f);print('p:', p.size()) p = self.drop_1(p);print('p:', p.size()) p = self.up_1(p);print('p:', p.size()) p = self.drop_2(p);print('p:', p.size()) p = self.up_2(p);print('p:', p.size()) p = self.drop_2(p);print('p:', p.size()) p = self.up_3(p);print('p:', p.size()) p = self.drop_2(p);print('p:', p.size()) auxiliary = F.adaptive_max_pool2d(input=class_f, output_size=(1, 1)).view(-1, class_f.size(1));print('auxiliary:', auxiliary.size()) res1 = self.final(p);print('res1:', res1.size()) res2 = self.classifier(auxiliary);print('res2:', res2.size()) return res1 , res2
# 随机生成输入数据rgb = torch.randn(1, 3, 512, 512)# 定义网络net = PSPNet(psp_size=512,n_classes=8,deep_features_size=256)# 前向传播out, out_cls = net(rgb)# 打印输出大小print('---out--'*5)print(out.shape)print('--out_cls---'*5)print(out_cls)print('-----'*5)
转载地址:http://medtz.baihongyu.com/